Computer System Overview

Chapter 1 of [OS4e], Chapter 2 of [OSC]:

- Basic Elements
- Processor Registers
- Instruction Execution
- Interrupts
- The Memory Hierarchy
- Cache Memory

Basic Elements

Computer = Processor + Memory + I/O modules
- Processor (CPU) executes instructions
- Instructions and data are stored at addresses in main memory
- I/O modules (device controllers) handle data transfers between computer and environment
Processor Registers

Set of registers provides local storage area for processor
- smaller and faster than main memory

Registers are of two types:
- user-visible registers
- control and status registers

Instructions reference user-visible registers
- processor reads from or writes to those registers during instruction execution
- registers contain data being processed, pointers and indices to addresses; condition codes are sometimes visible
- compilers and assembly-language programmers try to optimise register use
Control and status registers affect how processor executes instructions

- Examples:
 - PC contains memory address of instruction to be fetched
 - IR contains instruction most recently fetched
 - PSW contains condition codes, interrupt enable bit, supervisor mode bit
- Some registers may be referenced by instructions executed in supervisor mode; others are accessible only to hardware

Instruction Execution

Execute cycle involves data transfer between processor and memory (or an I/O module), data processing or changing control flow

Most processors pipeline instruction execution and allow Direct Memory Access
Interrupts

interrupt (or *exception*)

- signal sent to processor
 - e.g. attempt to divide by zero
 - e.g. illegal attempt to access address
 - e.g. execution of *trap* instruction (to make “system call”)
 - e.g. I/O transfer has completed
- source and priority of interrupt are recorded

A more realistic model of instruction execution makes provision for interrupts and, hence, Operating Systems!
Interrupt handling

- Contents of PC and PSW are stored automatically.
- Interrupt service routine (ISR) is executed in supervisor mode.
- ISR may store contents of other registers.
- ISR may call other operating system routines.
- Eventually, contents of registers may be restored and execution continued in user mode from point of interruption.

N.B. Interrupt handling may itself be interrupted!

→ Store contents of registers in system stack.

(a) Interrupt occurs after instruction at location N.

(b) Diagram illustrating the flow of execution.
The Memory Hierarchy

Storage devices can be put in order of increasing capacity, namely,
- registers, cache memory, main memory, hard disk, tape
 - access time also increases
 - cost per bit decreases
 - first three are *volatile*

caching
- copying information into faster device

N.B. “cache memory” is not the same as “disk cache” (space allocated in main memory)
Cache Memory

- Processors can execute instructions faster than instructions (and data) can be fetched from main memory!
- Cache memory provides a solution which relies on *locality of reference* and is invisible to OS.