ILP Models for the Synthesis of Asynchronous Control Circuits

Josep Carmona and Jordi Cortadella
Universitat Politècnica de Catalunya
Outline

• Synthesis of Async. Circuits: VME example
 – State space explosion problem
 – Structural methods
• Petri net methods. ILP for:
 – State encoding verification
 – Decomposition of initial specification
• Design Flow
• Synthesis Example
Synthesis of Async. Controllers

HDL

CSP, Tangram, Balsa, Verilog...

Graph Model

Petri nets, Automata, ...

Boolean Gates

Complex gates, two-level, ...

This work

CMOS, NMOS, FPGAs, ...

Physical Implementation
Synthesis of Async. Controllers

This thesis
Device

Data Transceiver

Bus

VME Bus Controller

DSr LDS LDTACK DDTACK

Read Cycle
Boolean equations:

\[\text{LDS} = D \lor \text{csc} \]
\[\text{DTACK} = D \]
\[D = \text{LDTACK} \]
\[\text{csc} = \text{DSr} \]
ILP Models

• Motivation: avoid the computation of the state space for the checking of USC/CSC
 – Linear Algebra (Integer Linear Programming models)
 – USC/CSC fast conservative method
 – Novel method for decomposition
Previous Work

• David Cells [David] [Varshavsky]
• Lock Theory [Vanbekbergen] [Ykman-Couveur, Lin, Goossens, De Man]
• ILP & Implicit places [Colom, García-Vallés]
• Unfoldings & ILP [Khomenko, Koutny, Yakovlev]
• Unfoldings & SAT [Khomenko, Koutny, Yakovlev]
Marking equation

Incidence matrix

\[
\begin{pmatrix}
-1 & 0 & 0 & 0 & 1 & -1 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 1 & -1 & 0 & 0
\end{pmatrix}
\]
Marking equation

\[M' = M + Ax \]

Necessary reachability condition, but not sufficient.
The encoding problem
Checking Unique State Coding

$M_0 \xrightarrow{x} M_1 \xrightarrow{z} M_2$

$z = \{a^+ \ b^+ \ a^- \ b^-\}$

- M_1 and M_2 have the same binary code
 (z must be a complementary set of transitions)

- M_1 and M_2 must be different markings
 (they must differ in at least one place)
Checking Unique State Coding

\[M_0 \xrightarrow{x} M_1 \xrightarrow{z = \{a+ b+ a- b-\}} M_2 \]

ILP formulation:

\[
\begin{align*}
M_1 &= M_0 + Ax \\
M_2 &= M_1 + Az \\
bal(z) \\
M_1 &\neq M_2 \\
x, z, M_1, M_2 &\geq 0
\end{align*}
\]

\[bal(z) \equiv \forall a: #(a+) = #(a-) \]
Some experiments (USC)

<table>
<thead>
<tr>
<th>benchmark</th>
<th></th>
<th>P</th>
<th></th>
<th></th>
<th>T</th>
<th></th>
<th></th>
<th>signals</th>
<th></th>
<th>CLP</th>
<th></th>
<th>ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PpWk(3,9)</td>
<td>106</td>
<td>56</td>
<td>28</td>
<td>10.53</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PpWk(3,12)</td>
<td>142</td>
<td>74</td>
<td>37</td>
<td>876.63</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PpWkCsc(3,9)</td>
<td>108</td>
<td>56</td>
<td>28</td>
<td>2002.29</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PpWkCsc(3,12)</td>
<td>144</td>
<td>74</td>
<td>37</td>
<td>time</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PpArb(3,9)</td>
<td>128</td>
<td>72</td>
<td>34</td>
<td>0.01</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PpArb(3,12)</td>
<td>164</td>
<td>90</td>
<td>43</td>
<td>0.00</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PpArbCsc(3,9)</td>
<td>131</td>
<td>72</td>
<td>34</td>
<td>time</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PpArbCsc(3,12)</td>
<td>167</td>
<td>90</td>
<td>43</td>
<td>time</td>
<td>1.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **CLP** [Khomenko, Koutny, Yakovlev]:
 - Partial order approach (Unfoldings)
 - Integer Linear Programming
Checking Complete State Coding

ILP formulation:

\[M_1 = M_0 + Ax \]
\[M_2 = M_1 + Az \]
\[bal(z) \]
\[M_1 \in ER(a^*) \]
\[M_2 \notin ER(a^*) \]
\[x, z, M_1, M_2 \geq 0 \]

\(n \) ILP problems must be solved
(\(n \) is the number of transitions with label \(a^* \))
Some experiments (CSC)

| benchmark | |P| | |T| | |signals| | |CLP| | |SAT| | |ILP| |
|-----------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Tangram(3,2) | 142 | 92 | 38 | 0.01 | 0.01 | 1.08 |
| Tangram(4,3) | 321 | 202 | 83 | 0.06 | 0.04 | 9.00 |
| Art(10,9) | 216 | 198 | 99 | 0.00 | 0.42 | 0.06 |
| Art(20,9) | 436 | 398 | 199 | 5.00 | 10.35 | 0.24 |
| Art(30,9) | 656 | 598 | 299 | 38.02 | 81.82 | 0.56 |
| Art(40,9) | 876 | 798 | 399 | 138.04 | 264.57 | 0.92 |
| Art(50,9) | 1096 | 998 | 499 | 377.00 | 630.41 | 1.46 |
| ArtCsc(10,9) | 752 | 630 | 315 | 14 m | 3 m |
| ArtCsc(20,9) | 1532 | 1270 | 635 | time | mem | 27 m |
| ArtCsc(30,9) | 2312 | 1910 | 955 | time | mem | 1.5 h |
| ArtCsc(40,9) | 3092 | 2550 | 1275 | time | mem | 3.5 h |
| ArtCsc(50,9) | 3872 | 3190 | 1595 | time | mem | 7 h |

- **SAT (Khomenko et al)**:
 - Partial order approach (Unfoldings)
 - Satisfiability solver
Checking the CSC support for a signal

Let Σ be the set of signals and Σ' a potential support for a. Let z' be the projection of z onto Σ'. Σ' is a valid support for a if the following model has no solution:

\[
\begin{align*}
M_1 &= M_0 + Ax \\
M_2 &= M_1 + Az \\
\text{bal}(z') \\
M_1 &\in \text{ER}(a^*) \\
M_2 &\not\in \text{ER}(a^*) \\
x, z, M_1, M_2 &\geq 0
\end{align*}
\]
Algorithm to find the support

\[z' := \{a\} \cup \{\text{trigger signals of } a\}; \]

\text{forever}

\[z'' := \text{ILP_check_support} (\text{STG, } a, z'); \]

\text{if } z'' = 0 \text{ then return } z';

\[z' := z' \cup \{\text{unbalanced signals in } z''\}; \]

\text{end \text{forever}}
CSC support for x_4

- **Support for x_4**
- **Trigger signals. ILP Model feasible => No CSC**
- **y_4 unbalanced -> balanced. ILP model infeasible => CSC!**
CSC support for x_4

Synthesis of x_4:
x_4, x_3, x_5, z, y_4
Synthesis Flow

• Motivation: complete design flow for the synthesis of asynchronous control circuits
 – Linear Algebra & Graph theory methods
 – Specially suited for well-structured specifications
 – Conservative approach
 – Results comparable to state-based methods
Synthesis Flow

STG

structural encoding

STG with CSC

structural transformations

optimized STG

support for a

support for b

... support for z

STG for a

STG for b

STG for z

projection

logic synthesis (petrify)

circuit for a

circuit for b

circuit for z
Synthesis example
Experiments (Support + Synthesis)

- Recent work on synthesis with unfoldings and SAT [Khomenko, Koutny, Yakovlev]

| benchmark | States | |P| |T| |signals| | Literals Petrify | ILP | CPU Petrify | ILP |
|--------------------|--------|----------|----------|----------|----------|----------|----------|----------|----------|
| PpWkCsc(2,6) | 8192 | 47 | 26 | 19 | 57 | 57 | 5 | 1 |
| PpWkCsc(2,9) | 524288 | 71 | 38 | 19 | 87 | 87 | 49 | 2 |
| PpWkCsc(3,9) | 2.7 x 10E7 | 106 | 56 | 28 | ? | 130 | mem | 3 |
| PpWkCsc(3,12) | 2.2 x 10E11 | 142 | 74 | 37 | ? | 117 | time | 3 |
| PpArbCsc(2,6) | 61440 | 62 | 36 | 17 | 77 | 77 | 21 | 83 |
| PpArbCsc(2,9) | 3.9 x 10E6 | 110 | 60 | 29 | 107 | 107 | 185 | 59 |
| PpArbCsc(3,9) | 3.3 x 10E9 | 131 | 72 | 34 | 163 | 165 | 10336 | 289 |
| PpArbCsc(3,12) | 1.7 x 10E12 | 167 | 90 | 43 | ? | 210 | time | 608 |
| TangramCsc(3,2) | 426 | 142 | 92 | 38 | 97 | 103 | 56 | 146 |
| TangramCsc(4,3) | 9258 | 321 | 202 | 83 | ? | 247 | mem | 2 h |
Conclusions

• CAD tool with a sound theoretical basis for the synthesis of asynchronous circuits.
• Most of the techniques can be included in other approaches for synthesis/verification.
• Techniques specially suited for well-structured specifications (ideally obtained from HDL programs)
• Experimental results show good performance and quality even for large systems