Industrial take-up of asynchronous design

Steve Furber, The University of Manchester

- Outline:
 - Industrial take-up
 - production, research and start-ups
 - The Amulet group
 - Self-Timed Solutions
 - Issues and conclusions

Industrial take-up: production

- Philips
 - 15 years developing Tangram
 - HDL to silicon synthesis route
 - by far the most advanced async tools
 - now engaged in product development
 - 80C51 microcontroller
 - Myna pager chip
 - contactless smartcard chip
Industrial take-up: research

■ Sun
 • very high-speed async pipelines (GaSP)
 – 4GHz on current CMOS process technology
 • exploring novel processor architectures
 • some input to clocked SPARC designs

■ Intel
 • x86 instruction length decoder (1996)
 • async designers influenced P4 clock tree

■ Sharp
 • DDMP media processor

■ IBM
 • Rapid Single-Flux Quantum circuits

■ NTT Network Innovation Laboratories
 • Fully asynchronous self-reconfigurable FPGA
Industrial take-up: start-ups

■ Cogency
 • UK start-up, now based in Toronto
 – initial staff from AMULET group
 • self-timed DSP developed for LG Semicon
 • planned full self-timed ASIC design flow
 – test and static timing tools
 • now moved away from async technology

Industrial take-up: start-ups

■ Theseus
 • US start-up
 • founded by ex-Honeywell engineers
 – ‘re-invented’ async design from scratch
 – little initial contact with established async community
 • Null Convention Logic
 • strong DoD and Motorola contacts
 • significant downsizing in 2001
Industrial take-up: start-ups

- Fulcrum (formerly ADD Inc.)
 - US start-up
 - founded by ex-Caltech students
 - Alain Martin’s group
 - $20 million 2nd round funding secured?
 - Current focus is on network processing
 - fully async design flow

- Myricom
 - Myrinet high-speed switch fabric Ics

- Black Tower
 - asynchronous MIPS core

- Self-Timed Solutions… more later!
Amulet group mission

- to take self-timed (asynchronous) design from academic research into commercial exploitation
 - by developing large-scale VLSI demonstrators
 - by addressing other technical issues as they arise in the course of the research
 - by collaborating with industry to address commercial and market issues

The Amulet microprocessors

- Amulet1 (1994)
 - demonstrated feasibility
- Amulet2e (1996)
 - demonstrated merits
- Amulet3 (2000)
 - demonstrates commercial viability of async SoC design
Amulet3

- a third generation asynchronous ARM
 - performance comparable with ARM9
 - over 100 MIPS (Dhrystone 2.1)
 - ARM architecture v4T
 - includes Thumb decoder
- developed within the OMI ATOM project
 - first application as telecommunications controller subsystem

DRACO

- DECT Radio Communications Controller
 - developed in collaboration with Hagenuk GmbH
 - combines ISDN and DECT telecommunications systems
 - world’s first commercial 32-bit asynchronous SoC product?
Amulet collaborations

- ARM, Inmos
- ARM, GPS
- ARM, Hagenk
- ARM, Hag.
- ARM, Hag.
- ARM, ...

- OMI-MAP
- OMI-HORN
- ARM, GPS
- TAM-ARM
- Philips
- EXACT
- PowerPack
- Balsa
- G3CARD
- DE2
- ATOM
- PREST
- Theseus
- Cogniscience
- GPS (Mitek)
- ACiD working group

Amulet companies

- Cogency Technology, Inc.
 - founders included Amulet research staff
 - still trading, though not in async technology
- Cogniscience Ltd
 - neural network research
 - will use async technology, probably
- Self-Timed Solutions

Summary

- Only Philips & Myricom have async products
- Major companies are keeping watch
 - Sun, Intel, IBM, Sharp, Infineon, …
- Start-ups appear from time to time
 - Cogency, Theseus, Fulcrum, STS, …
 - but no sustainable async business yet

Conclusion: async design is still a fringe activity
Why is async a fringe activity?

- **It’s different**
 - designers are very used to clocked design
- **It’s hard**
 - thinking about asynchronous concurrency requires a new mindset
- **It’s poorly supported**
 - most CAD tools assume clocks are used
- **Its ‘value proposition’ is insufficient**
 - all the above can be overcome, but do the benefits justify the cost of doing so?

When might async take-off?

- **When the value proposition is strong!**
 - research is reducing the cost
 - Tangram, micropipelines, Petrify, Balsa, NCL...
 - technology is increasing the benefit
 - demand for lower power & higher performance
 - difficulty of clocking large processors and SoCs
 - EMC
 - security (immunity to power and EM analysis)
 - RSFQ 100 GHz operation
 - makes clocking virtually impossible!
Possible paradigm shift

- GALS - Globally Asynchronous Locally Synchronous - systems
 - clocked modules
 - supports conventional design flow
 - with asynchronous on-chip interconnect
 - e.g. CHAIN ‘chip-area network’
 - solves large SoC clock distribution problem
 - future SoCs will have hundreds/thousands of IP blocks and complex interconnect topologies

Conclusions

- Async technology:
 - offers significant benefits at significant cost
 - is still a fringe activity
- The ‘value proposition’ is improving
 - costs falling, benefits growing
- A successful async company must be
 - in the right business
 - with the right technology
 - at the right time