TAST

TIMA Asynchronous Synthesis Tools

Anh Vu Dinh Duc, Jean-Baptiste Rigaud, Amine Rezzag, Antoine Siriani, Joao Fragoso, Laurent Fesquet, Marc Renaudin

Plan

- Introduction
- Design Flow
- Results
- What’s Next?
- Conclusion
Plan

- Introduction
 - Presentation of the Group
 - Presentation of the Project
- Design Flow
- Results
- What’s Next?
- Conclusion

Introduction

- Presentation of the Group
 - Lab: TIMA, Grenoble, France
 - CiS Group: Concurrent Integrated Systems
 - Contact: Marc.Renaudin@imag.fr
 - Link: http://tima.imag.fr/cis
Introduction

• Presentation of the Project
 – Competition
 ➢ Time to Market
 ➢ Time to Quality

 – Crisis
 ➢ NRE Cost Reduction
 ➢ Manufacturing Cost Reduction

• Technology
 VDSM
 • High Complexity
 • Low Voltage
 • High Defect Density

• Applications
 SoCs for Smart Devices
 • Low Power
 • Low EMI
 • High Speed
 • High Reliability
Introduction

• Presentation of the Project
 – Main Features
 • High Level of Abstraction
 – CHP
 – Petri Net
 • High Level of Automation
 – Multi-target Compiler
 » Simulation
 » Synthesis
 – Interface with Standard Tools
 – Ease of Use
 • Co-Design Platform
 – Hierarchy
 – Micropipeline, QDI, Synchronous and, Behavioral Modules
 – Design Reuse

Plan

• Introduction
• Design Flow
 – Front End Compiler
 • CHP
 • Petri Net
 – Simulation Model Generator
 • VHDL Behavioral Model
 – Synthesizer
 • DTL
 • Micropipeline
 • QDI
• Results
• What’s Next?
• Conclusion
CHP Code

TAST Compiler

TAST: TIMA ASYNCHRONOUS SYNTHESIS TOOLS

Design Flow

- CHP: Communicating Processes
 - Asynchronous Point to Point Communications
 - Parallelism
 - Guarded Commands
 - Non Determinism
 - Traceability

Specific TAST Features
- Arbitrary Precision Arithmetic
- Data Encoding (1 out of n)
- Protocol (BD/DI)
- Hierarchy
- Configuration Mechanism
TAST: TIMA ASYNCHRONOUS SYNTHESIS TOOLS

Design Flow

- Petri Net
 - Place/Transition Petri Net
 - DFG-CFG
 - Timed
 - Hierarchical
Design Flow

- Simulation
 - VHDL Behavioral Model
 - CHP Component = Entity/Architecture
 - CHP Process = VHDL Process
 - Each Place of the Petri Net gives a state signal
 - Each Primitive in the Petri Net gives a VHDL sequential bloc in the VHDL Process
 - Trace is obtained through VHDL assertions
 - Non Determinism is managed through a VHDL random generator and a SEED
Design Flow

• Synthesis
 – DTL: Specifications for a Synthesizable CHP
 • Shared variables are forbidden
 – a := b + c, a := d + e; FORBIDDEN
 • Variables must be assigned before they are read
 – x := x + 1; FORBIDDEN
 • Values sent to output channels must only depend on values received from input channels
 – Concept of Combinatorial Process
 • Output channels can be initialized once at the beginning of the process
 – [S!F.F.F[16][3]; ...] ALLOWED
 • Sequential access to variables must exhibit true dependency
 – a := b + c; d := e; FORBIDDEN
 – S!x; $S!x$ FORBIDDEN
Design Flow

- Synthesis
 - DTL: Extraction of a Memorization Element

Combinatorial Process

Register

Inputs
 - Read

Outputs
 - Write
Design Flow

• Synthesis
 – QDI Synthesis
 • Equation Dependency Generation
 • Protocol Selection
 • Gate Netlist Generation
 • Optimization
 • Mapping onto VHDL Standard Cell Libraries
Design Flow

- Synthesis
 - Micropipeline Synthesis
 - Target Architecture:
 - Data path is extracted from DFG Part
 - It is synthesized with Standard Tools
 - Petri Net (CFG) is synthesized in the same way than QDI except that Ports are turned to Single-Rail
 - Delays are added to compensate Guard Computation Delays and Enable to Output Delays

TAST: TIMA ASYNCHRONOUS SYNTHESIS TOOLS

- Low Power
- Low Voltage
- Low Noise

Simulation Model Generator
 - Behavioral Asynchronous VHDL Model
 - VHDL Custom Libraries for Simulation

TAST Model Generator
 - Reports
 - VHDL Simulator

Standard Design Flow
 - Back-end Tools

GALS, GALA SoCs
- Secure Smart-Cards
- Smart Devices

Current profiles (Mica processors)
Plan

• Introduction
• Design Flow
• Results
 – CHP Code Example
 – VHDL Behavioral Model
 – Micropipeline Synthesis
 – QDI Synthesis
• What’s Next?
• Conclusion

Results

• CHP Code Example:
 – A Counter 0 to 6
 • Non DTL Compliant Code

      ```vhdl
      COMPONENT counter
      PORT (GO: IN DI PASSIVE SR; S: OUT DI ACTIVE BIT[2..0])
      BEGIN
      PROCESS main
      PORT (
        GO: IN DI PASSIVE SR; S: OUT DI ACTIVE BIT[2..0]
      )
      VARIABLE x : bit[2..0]:
      [x:=0; x<7 => S=x; x:=x+1
      @ x=7 => x:=0; GO?])
      END counter;
      ```
Results

• CHP Code Example:
 – A Counter 0 to 6
 • DTL Compliant Code

```vhdl
COMPONENT counter
PORT (GO: IN DI PASSIVE SR;
      S: OUT DI ACTIVE BIT[2:0])
CHANNEL CS, NS: DI BIT[2:0];
BEGIN
  PROCESS MAIN
  PORT (GO: IN DI PASSIVE SR;
       CS: IN DI ACTIVE BIT[2:0];
       NS: OUT DI ACTIVE BIT[2:0];
       S: OUT DI ACTIVE BIT[2:0])
  VARIABLE cs_v: BIT[2..0];
  [cs_v] = "1.1.1" => NS?cs_v,
  S!cs_v;
  [cs_v] = "0.0.0" => GO?cs_v,
  NS!cs_v;
  END counter;
```
Results

• QDI Circuit: Process Main

Results

• QDI Circuit: Process Increase
Results

• Micropipeline Circuit: Process Main

• Micropipeline Circuit: Process Increase
Plan

• Introduction
• Design Flow
• Results
• What’s Next?
• Conclusion

What’s Next?

• C Simulation Models
• VHDL Entry
• Logic Optimization
 – Exploration of Various Protocols
 – On-the-fly Complex Cell Generation
 – Exploration of Various Data Encoding
• Prototyping QDI Circuits with FPGAs
Plan

- Introduction
- Design Flow
- Results
- What’s Next?
- Conclusion

Conclusion

- What to keep in mind?
 - Weaknesses
 - Optimization
 - Maturity
 - Strengths
 - High Level of Abstraction
 - High Level of Automation
 - 1 out of N Arithmetic
 - Co-Design Framework
 - Address VDSM SoCs
- Perspective
 Offer a set of CAD Tools to Design Efficient Asynchronous VLSI Circuits and allow Designers to make the Best Trade-offs for their Applications.
Thank You